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Chapter 6:  Analysis of Data from Ernest Refuse Pile Site,
           Indiana County, PA

The Ernest mine site is located in the Crooked Creek watershed in Indiana County, PA near the
town of Ernest (see Figure 6.0). The U.S. Army Corps of Engineers (USACE) completed
construction of Crooked Creek dam in 1940 and has managed the lake since then for flood
control and recreational purposes.  The Commonwealth of Pennsylvania constructed and
operated Crooked Creek State Park at the lake prior to 1981 when the USACE acquired the
facility.  Some portions of the Crooked Creek watershed were impacted by acid mine drainage
from extensive bituminous coal mining, particularly the McKee Run tributary, from the town of
Ernest downstream to the town of Creekside at the confluence with the main stem of Crooked
Creek.  The Ernest mine complex, including a large underground mine and associated coal refuse
pile, was operated from the early 1900�s to 1965 when the mine was abandoned.  

An acid mine drainage treatment plant was constructed by the Pennsylvania Department of
Environmental Protection and operated from June 1978 until May 1980 when problems with iron
sludge recycling operations led to the closure of the plant.  The water quality samples and flow
measurements from the Ernest refuse pile discharge that are discussed in this chapter were
collected between March 1981 and December 1985 as part of studies to evaluate water quality
and aquatic biology in the Crooked Creek watershed following closure of the treatment plant. 
The raw data are listed in Appendix D.  There are 198 observations (N = 198), consisting of
values for 10 parameters:  1)  Days (developed from the date that the sample was taken);  2)  pH; 
3)  Flow;  4)  Acidity;  5)  Acid load;  6) Total Iron (Fe);  7) Total Iron load;  8) Ferrous Iron
(FFe);  9) Sulfate (S04);  10) Sulfate load.  

There is a rather large time gap (four months) between the first three observations and the
remainder of the samples that were collected at approximately weekly intervals.  There were also
at least 15 samples without pH and/or ferrous iron data.  After these samples were omitted and
other adjustments were made (see Figure 3.1), a revised data set of 174 observations was
compiled and used for most of the statistical analyses presented in this chapter.  Time gaps in the
data should be considered in examining the time series analyses, because elements of the time
series analysis assume that there are equal intervals between observations.
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Figure 6.0: Map of Ernest Mine Site
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Univariate Analysis 

Summary statistics for the adjusted data (N = 174) are presented in Table 6.1. 

Table 6.1: Summary Statistics of Data (N=174)

N Mean Median
Trimmed

Mean
Standard
Deviation

Standard Error
of the Mean

Days 174 985.6 1027.0 995.3 457.2 34.7

pH 174 2.5061 2.5000 2.5018 0.1524 0.0116

Flow 174 127.2 51.0 85.9 337.0 25.5

Acidity 174 3621 3539 3585 1357 103

Acid Load 174 3367 1843 3031 3639 276

Total iron 174 527.2 515.5 520.5 210.0 15.9

Iron Load 174 626.6 275.0 563.1 722.3 54.8

Ferrous Iron 174 364.8 360.5 351.5 251.9 19.1

SO4 174 3887.4 3804.0 3915.5 1105.2 83.8

SO4 Load 174 3837 2108 3431 4198 318

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Days 0.0 1735.0 703.0 1343.5 46.4

pH 2.1 3.1 2.4 2.6 6.1

Flow 2.0 3188.0 8.0 163.2 265.0

Acidity 778 16401 3016 4301 37.5

Acid Load 111 17663 412 5641 108

Total iron 20.0 1929.0 395.0 653.0 39.8

Iron Load 10.0 2758.0 50.5 1147.7 115

Ferrous Iron 8.0 1760.0 161.5 512.0 69.1

SO4 142.0 6115.0 3155.0 4759.5 28.4

SO4 Load 117 17746 513 6394 109

The coefficient of variation (CV%) remains within fairly reasonable limits for pH, acidity, and
iron.  However, variability in ferrous iron (69%) is large.  Sulfate is in reasonable control (CV =
28%).  Flow, acid load, iron load, and sulfate load show very large variability (all greater than
CV = 100%) which suggests that the large variability of the load-type variables is largely due to
the high degree of variability shown by flow.  These parameters require log transformation to
control this variability.  The frequency distribution of pH is symmetrical (Figure 6.1a) while
flow is skewed, although the major part of the skewness arises from two extremely high values
(Rows 142-3 in Appendix Table D, flow = 3003.0 gpm and 3188.0 gpm respectively).  All other
values of this parameter range from less than 10 to hundreds.  Similarly, acidity has an extremely
high value (Appendix D Table, Row 143 = 16,401 mg/L); acid load (Figure 6.1b) is skewed. 
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Total iron and total iron load follow the same pattern.  Ferrous iron has one exceptional value. 
Sulfate (Figure 6.1f) is negatively skewed, whereas sulfate load is positively skewed.  This
behavior is an indication of the effect that flow can have on a parameter.

Table 6.2: Summary Statistics of Data (N=174)

N Mean Median Trimmed
Mean

Standard
Deviation

Standard Error
of the Mean

Days 174 985.6 1027.0 995.3 457.2 34.7

pH 174 2.5061 2.5000 2.5018 0.1524 0.0116

Log Flow 174 1.6062 1.7076 1.6081 0.6970 0.0528

Log Acidity 174 3.5349 3.5489 3.5440 0.1466 0.0111

Log Acid Load 174 3.1854 3.2654 3.1930 0.6138 0.0465

Log Total Iron 174 2.6836 2.7122 2.6997 0.2066 0.0157

Log Iron Load 174 2.3564 2.4393 2.3703 0.7244 0.0549

Log Ferrous Iron 174 2.3989 2.5569 2.4442 0.4696 0.0356

Log SO4 174 3.5646 3.5802 3.5815 0.1748 0.0133

Log SO4 Load 174 3.2403 3.3240 3.2480 0.6143 0.0466

Minimum Maximum
First

Quartile
Third

Quartile
Coefficient of

Variation

Days 0.0 1735.0 703.0 1343.5 46.4

pH 2.1000 3.1000 2.4000 2.6000 6.1

Log Flow 0.3010 3.5035 0.9031 2.2127 43.4

Log Acidity 2.8910 4.2149 3.4795 3.6336 4.1

Log Acid Load 2.0453 4.2471 2.6149 3.7514 19.3

Log Total Iron 1.3010 3.2853 2.5966 2.8149 7.7

Log Iron Load 1.0000 3.4406 1.7032 3.0598 30.7

Log Ferrous Iron 0.9031 3.2455 2.2082 2.7093 19.6

Log SO4 2.1523 3.7864 3.4990 3.6776 4.9

Log SO4 Load 2.0682 4.2491 2.7098 3.8058 18.9

Summary statistics for log (base 10) transformed data are listed in Table 6.2  (N = 174).  The
variables are now either well-behaved (CV  20%) or are not too extreme (CV 50%).  Load≤ ≤
variables show the largest CV%.  This is most likely largely due to flow variability.  

Histograms of the log transformed data are displayed in Figures 6.1c, 6.1e, and 6.1g.  By plotting
the histograms of the original data alongside that of the transformed data, the effect of the
transformation is clear.  Because pH is already expressed in logarithms, no transformation was
applied.  In all other parameters, log transformation expanded low magnitude values and reduced
asymmetry (for acid load in Figures 6.1b and 6.1c), sometimes perhaps, too much (Figures 6.1d
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and 6.1e, iron and log iron respectively).  Similarly, because the histogram of sulfate is
negatively skewed, log transformation accentuated the negative skewness (Figures 6.1f and 6.1g)
making log transformation unnecessary.  All load variables are strongly positively skewed when
untransformed and the log transformation helps to improve their symmetry.  

Figure 6.1a: Histogram of pH, (N = 174)

Figure 6.1b: Histogram of Acid Load, (N = 174)

Figure 6.1c: Histogram of Log Acid Load ( N=174)
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Figure 6.1d: Histogram of Total Iron (N=174)

Figure 6.1e: Histogram of Log Total Iron (N=174)

Figure 6.1f: Histogram of SO4 (N=174)
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Figure 6.1g: Histogram of Log SO4 (N=174)

Bivariate Analysis

The bivariate statistical analysis of the Ernest data includes bivariate plots (routinely used in
regression and correlation analyses), the use of a correlation matrix to compare and evaluate
correlation coefficients, and the use of cross correlation functions to determine if lags in the data
for certain parameters tend to obscure correlations that may be present.  The correlation matrix is
an element of some multivariate statistical analyses, such as principal components analysis and
factor analysis (in the r mode).  The cross-correlation function is an element of time series
analysis because it computes and graphs correlations between two time series.  Both of these
statistical tools are included in this discussion of bivariate analysis because they are useful in
examining the relationship between pairs of variables.  

The correlation coefficients for all pairs of variables are shown in Table 6.3.  The correlation
coefficient (r) at the five percent probability level is given above the table and all correlation
coefficients larger than this number are significantly different from zero.  For example, only iron
vs. pH (r = 0.124) is not significantly different from zero.  Similarly, ferrous iron vs. acidity (r =
0.045) and sulfate vs. ferrous iron (r = 0.083) are also not significantly different from zero.  All
other coefficients reflect a real association (statistically significant), however, in many cases, the
degree of association (r 2 x 100%) is small.  For example, the correlation of acidity and pH (r =
!0.365) indicates an inverse linear association between the two variables as would be expected,
but the degree of association is small (r 2 = 13%).
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Table 6.3: Correlation Coefficients for 9 Parameters (N=174, r0.05 = 0.159)

pH Flow Acid Acid Load Total Iron Iron Load Ferrous Iron SO4

Flow 0.191

Acidity !0.365 0.308

Acid Load 0.483 0.206 !0.224

Total Iron 0.124 0.337 0.526 0.263

Iron Load 0.498 0.229 !0.262 0.913 0.375

Ferrous iron 0.248 !0.020 0.045 0.337 0.480 0.388

SO4 !0.547 !0.184 0.600 !0.307 0.174 !0.339 0.083

SO4 Load 0.472 0.438 !0.030 0.906 0.386 0.890 0.285 !0.293

There are three large correlation coefficients between acid load vs. iron load, acid load vs. sulfate
load, and iron load vs. sulfate load.  These correlation coefficients are all around r = 0.9 (i.e.,
about 80 percent in common), probably because of the domination of flow in the measurement of
load variables.  Whereas, the individual concentration variables acidity vs. iron (r = 0.526),
acidity vs. sulfate (r = 0.6), and iron vs. sulfate (r = 0.174) show much lower association (the
largest r2  is 36 %).  In addition, any load variable vs. concentration of the same variable shows
no appreciable relationship.  Thus, the relatively high correlation coefficients due to the
inclusion of flow in all load variables is an artifact from the calculation for load (concentration x
0.01212 x flow).  

When one examines the cross-correlation functions (Figures 6.2a to 6.2d), it can be seen that the
largest correlation occurs at lag zero in Figure 6.2a (pH vs. log flow) and at lag one in Figure
6.2c (pH vs. log acid load) and that the correlations are of the same order of magnitude.  Because
pH vs. log acidity (Figure 6.2b) yields the strongest r = !0.466 at lag zero, which is much
weaker than the value yielded by pH vs. acid load (Figure 6.2c), it is suspected that the effect of
flow on load is responsible for the higher correlation.  The highest correlation in Figure 6.2d (pH
vs. log iron) occurs at lag 19 (r = !0.336), but values of r > 0.25 occur haphazardly at many lags
and any association is likely to be very weak.
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Figures 6.2a and 6.2b: Cross Correlation Functions of pH vs. Log Flow, and pH vs.
Log Acid (respectively)
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Figures 6.2c and 6.2d: Cross Correlation Functions of pH vs. Log Acid Load, and pH
vs. Log Iron (respectively)

When either pH (which is a logarithmic measure) or logarithms of the other parameters are
plotted against days, they appear to show periodic variation with a very large degree of scatter
(see for example, pH vs. days (Figure 6.3a) and log flow vs. days (Figure 6.3b)).  Log acidity vs.
days was not as evident, but log acid load vs. days (Figure 6.3c) is clearly periodic.  Here again,
the effect of flow on load is likely to be responsible for the cyclical appearance.
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Figure 6.3a: Plot of pH vs. Time (days)

Figure 6.3b: Plot of Log Flow vs. Time (days)
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Figure 6.3c: Plot of Log Acid Load vs. Time (days)

Bivariate plots of untransformed data were made and it was found that in most cases, there was
little relationship between concentration and load (e.g., Figure 6.4, acidity vs. acid load).  The
only discrepancies are extreme values which occur as outliers (e.g., observation 158).

Figure 6.4: Plot of Acid vs. Acid Load
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bivariate plots of untransformed load variables are included in Figures 6.5a through 6.5c.  In
Figures 6.5a and 6.5c, the spread of the variables increases with magnitude (i.e., the data are
heteroscedastic and so should be expressed in logarithms).  Figure 6.5b (acid load and sulfate
load) is reasonably homoscedastic, indicating that sulfate load and acid load are not skewed in
their frequency distribution.  There are obvious extreme outliers in each of the three figures (e.g.,
observation 133 in Figures 6.5a and 6.5b, and observation 158 in Figures 6.5b and 6.5c).

Figure 6.5a: Plot of Iron Load vs. Acid Loading

Figure 6.5b: Plot of Acid Load vs. Sulfate Loading
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Figure 6.5c: Plot of Iron vs. Sulfate Load

Bivariate plots of logarithmically transformed data are shown in Figures 6.6a to 6.6d.  Log
acidity vs. log flow (Figure 6.6a) shows no relationship.  The exceptional values of two
observations of flow occur as outliers.  Log acid load, iron load, and sulfate load vs. log flow
showed strong linear associations (Figure 6.6b), with various outliers for the extreme values of
flow.  There appears to be no simple relationship between log acidity and log acid load (Figure
6.6c).  The only real association appears to be positive linear between log sulfate and log acid
(Figure 6.6d) which, as would be expected, tend to increase together.  The presence of two
extreme outliers probably would diminish the value of the correlation coefficient between them.

Figure 6.6a: Bivariate Plot of Log Acidity vs. Log Flow
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Figure 6.6b: Bivariate Plot of Log Sulfate vs. Log Flow

Figure 6.6c: Bivariate Plot of Log Acidity vs. Log Acid Load
 



Chapter 6

6-16

Figure 6.6d: Bivariate Plot of Log Sulfate vs. Log Acid

Time Series Analysis

Time series plots of six selected variables are displayed in Figures 6.7a through 6.7f.  pH (Figure
6.7a) illustrates the gap of missing data (September through December, 1982) and possesses two
extreme positive values during July 1983 (pH = 3.1) and December 1984 (pH = 3.1).  The July
1983 maximum is followed by an extreme minimum (pH = 2.1).  Time series plots of flow
(Figure 6.7b) and acidity (Figure 6.7c) are dominated by extreme values (March 19 and 26 for
the former, and March 26 for the latter). 

Time series plots of the load variables (iron, acid and sulfate Figures 6.7d, 6.7e, and 6.7f
respectively) are similar and appear to possess a seasonal component in May of each year.  This
apparent cyclicity is confounded by maxima in March and September 1981, August 1984, and
April 1985.  The most striking feature is the remarkable similarity in all three graphs, a feature
not evident in graphs of the variables expressed as concentrations.



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

6-17

Fi
gu

re
 6

.7
a:

T
im

e 
Se

ri
es

 P
lo

t o
f p

H

Fi
gu

re
 6

.7
b:

 T
im

e 
Se

ri
es

 P
lo

t o
f F

lo
w



Chapter 6

6-18

Fi
gu

re
 6

.7
c:

 T
im

e 
Se

ri
es

 P
lo

t o
f A

ci
di

ty

Fi
gu

re
 6

.7
d:

 T
im

e 
Se

ri
es

 P
lo

t o
f I

ro
n 

L
oa

d 



Statistical Analysis of Abandoned Mine Drainage in the Assessment of Pollution Load

6-19

Fi
gu

re
 6

.7
e:

 T
im

e 
Se

ri
es

 P
lo

t o
f A

ci
d 

L
oa

d

Fi
gu

re
 6

.7
f:

 T
im

e 
Se

ri
es

 P
lo

t o
f S

ul
fa

te
 L

oa
d



Chapter 6

6-20

Quality Control Limits for the Variables

Two measures of quality control were used to illustrate this aspect of the analysis.  The first is
conventional (mean ± 2x the standard deviation).  The second is non-parametric (median ± 1.96
x a function of the H-spread).  Since sample size, = 1, the function is: (1.25 * H-Spread /′N
1.35).  Both measures are based on analysis of the Clarion data ( �Quality Control Limits,�
Chapter 5).  Summary statistics for these measures are listed in Tables 6.4 and 6.5.  At the base
of each table are statistics for the three load variables expressed in logarithms.  

Table 6.4: Base Data for Calculation of Quality Control Limits of Ernest Data

No. Variable Mean X Median R = H-spread C-spread $σ H-spread/1.345

2. pH 2.506 2.50 0.2 0.530 0.1524 0.148

3. Flow 127.2 51.0 153.0 342.0 337.0 113.4

4. Acid 3621. 3539. 1283. 3493. 1357. 951.1

5. Acid Load 3367. 1843. 5210. 11307. 3639. 3862.1

6. Total Iron 527.2 515.5 358. 647. 210. 265.4

7. Iron Load 626.6 275.0 1096. 2193. 722.3 812.5

8. Ferrous Iron 364.8 360.5 348. 807. 251.9 258.

9. SO4 3887.4 3804. 1583. 3933. 1105.2 1173.5

10. SO4 Load 3837. 2108. 5857. 13711. 4198. 4341.7

Log. Data

5. Log Acid Load 3.120 3.265 1.127 1.869 0.631 0.835

7. Log Iron Load 2.277 2.439 1.352 2.168 0.747 1.002

10. Log SO4 Load 3.175 3.324 1.089 1.917 0.632 0.807

Table 6.5: Two Measures of Quality Control (1)  ± 2 $σ
(2) 1.96 [(1.25 H-spread) / 1.35 ]′N

No. Variable
Mean
( )X  ± 2 X $σ Md ± 1.96(..)

 1.96 [(1.25 H-

spread)/ 1.35 ′N Median 2 $σ
2. pH 2.506 2.201 to 2.811 2.137 to 2.863 0.363 2.500 0.305

3. Flow 127.2 -546.8 to 801.2 -226.7 to 328.7 277.7 51.0 674.0

4. Acid 3621 907 to 6335 1211 to 5867 2328 3539 2714

5. Acid Load 3367 -3911 to 10645 -7612 to 11298 9455 1843 7278

6. Total Iron 527.2 107.2 to 947.2 -134.2 to 1165.2 649.7 515.5 420.0

7. Iron Load 626.6 -818.0 to 2071.2 -1714.0 to 2264.0 1989.0 275.0 1444.6

8. Ferrous Iron 365 -139 to 868.6 -271 to 992 632 361 504

9. SO4 3887.4 1677.0 to 6097.8 931.1 to 6676.9 2872.9 3804.0 2210.4

10. SO4 Load 3837 -4559.0 to 12233.0 -8521.4 to 12737.4 10629.4 2108.0 8396.0
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Log. Data

5. Log Acid 3.120 1.858 to 4.382 1.220  to 5.310 2.045 3.265 1.262

7. Log Iron 2.277 0.783 to 3.771 -0.015 to 4.893 2.454 2.439 1.494

10. Log SO4 3.175 1.911 to 4.439 1.348 to 5.300 1.976 3.324 1.264

These two quality control limits are inserted as dashed lines in Figures 6.7a through 6.7f.  For pH
(Figure 6.7a), similar limits resulted from both measures.  The mean and median coincide (on the
scale of the graph in Figure 6.7a), and frequency distribution of pH is essentially symmetrical.

For flow and acidity (Figures 6.7b and 6.7c respectively), the standard deviations are inflated by
rare extreme values.  Thus, the quality control limits for both measures are essentially insensitive
except to the extremes.  It should be noted that the range is small.

The quality control limits for the load variables are wide, with the lower limits falling below
zero.  The lower limits are, therefore, omitted from the graphs (Figures 6.7d through 6.7f).  The
respective means and medians are not very different in magnitude and neither are the positive
control limits.  The use of either quality control limit would have little effect in identifying
exceedences of baseline pollution load.  It appears from these graphs that either measure would
suffice.  Sensitivity to departures from set limits could be increased by dividing by the square
root of N�, or by increasing sample size (e.g., from 1 to 4).  This would reduce the range to half
its original value.  On the other hand, use of the root N� factor with N� > 1, could increase the
sensitivity too much and many values of these widely fluctuating parameters would fall outside
the limits thereby calling for action.  If fluctuations arise from �natural causes� and not from
mining activity, this would be undesirable.  Obviously, the entire range of pH, for example, is
small (2.1 � 3.1) and the discharge is consistently acidic.

Model Identification

Autocorrelation functions form the basis for model identification in applying full-scale Box-
Jenkins time series analysis.  Hence, the autocorrelation and partial autocorrelation functions
were run on the data for each variable.  The graphs are presented in Figures 6.8a, 6.8b, 6.8c,
6.8e, and 6.8g, for the autocorrelation functions (Acf) and Figures 6.8d, 6.8f, and 6.8h for the
partial autocorrelation functions (Pacf).
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Figure 6.8a: Autocorrelation Function of pH

Figure 6.8b: Autocorrelation Function of Iron
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Figure 6.8c: Autocorrelation Function of Flow

Figure 6.8d: Partial Autocorrelation Function of Flow
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Figure 6.8e: Autocorrelation Function of Acidity

Figure 6.8f: Partial Autocorrelation Function of Acidity 
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Figure 6.8g: Autocorrelation Function of Acid Load

Figure 6.8h: Partial Autocorrelation Function of Acid Load
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pH (Figure 6.8a), flow (Figure 6.8c), and three load parameters (e.g., see Figure 6.8g for acid
load) yield similar Autocorrelation functions (Acf�s).  The concentration variables acidity
(Figure 6.8e), iron (Figure 6.8b), and sulfate (Figure not available) also show similar Acf�s, but
the former set (which includes load) differs from the latter.  The former set shows a strong
decline throughout the function.  This decline is confirmed by the single large spike at lag 1 in
the corresponding partial autocorrelation factors (Pacf�s, Figures 6.8d  and 6.8h).  This behavior
implies that all these variables require a first difference to remove the trend.  The Acf and Pacf
for each of the concentration variables (e.g., Figures 6.8e and 6.8f) suggest moving average
(MA) models with at most two terms (or one term and a first difference).  It is perhaps advisable
to try an auto-regressive moving average (ARMA) model in which the AR term could proxy for
the first difference and the MA term would take care of the remainder.

Model Fitting:  pH

It was decided to attempt to fit an auto-regressive integrated moving average (ARIMA) model
(1,1,1) to variation in pH.  The correlation coefficient between the AR and MA coefficients was
r = 0.81, which implies that they are closely associated (i.e., both are unlikely to be necessary). 
Testing the Acf of the residuals yielded a chi-square = 27.16 with 28 degrees of freedom (i.e.,
the Acf is not significantly different from that of white noise).  There is only one significant
spike at lag 20 in this Acf, thus, it is effectively clean.  Any further differencing results in
overdifferencing (i.e., chi-square of the Acf increases to significant again).  The model has
improved the variation (Pacf of the residuals has no significant spikes) but contains an
unnecessary coefficient .  Clearly, the AR (1) is adequately taken care of by the first$Φ1

difference.

If we now fit a moving average model with a first difference (i.e., an MA (0,1,1) model), the Acf
of the residuals yields a chi-square of 26.87 with 29 degrees of freedom (thus, not significantly
different from an Acf of white noise).  Any further differencing overcompensates.  The only
significant spike is at lag 20 as in the previous model.  Because this is an isolated significant
autocorrelation way out from zero lag, it is considered a random discrepancy.  The Pacf of the
residuals is also clean.  The 95% confidence limits around the MA coefficient ( ) does not$θ 1

contain zero.  Hence, the MA coefficient is significantly different from zero (real) and,
incidentally, about the same size as in the ARIMA model (  = 0.594).  The residual standard$θ 1

deviation is = 0.126, a reduction in the pH of the original data from 0.152 to 0.126.  The$σe

relationship may be expressed as:

z t  = z t �1  + a t � 0.594a t-1  
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Model Fitting: Flow (Log)

An AR (1,0,0) model was fitted to the variation in logarithms of the flow variable; it was
considered that the AR(1) coefficient would �take care of� the first difference.  Chi-square of the
residual = 30.06 with 28 degrees of freedom (0.50 > P > 0.30; i.e., not significantly different
from that expected from white noise).  There are no significant spikes in the Acf or Pacf values.  

This model yields the following equation with standard deviation of the residuals  = 0.347$σe

(reduced from 0.697 for the original standard deviation of the logarithms of flow in Table 6.2):

z t = 0.873 z t � 1 + 1.636 + a t   

Model Fitting: Acidity (Log)

From the Acf, developed during the identification step of the Box-Jenkins series, it was decided
to try an MA (0,1,2) model which would presumably clear out the large spikes at the first three
lags in the Acf.  Upon fitting, it turned out that the correlation coefficient between the two
moving average coefficients ( and ) was !0.612 (i.e., as one increased the other$θ 1 $θ 2

decreased).  A chi-squared test of the residual Acf yielded 29.86 with 28 degrees of freedom
(0.50 > P > 0.30).  The Acf spike at lag 6 is significantly larger than its error.

Upon testing the coefficients of this model, the  = 0.642 and is real, but the second  =$θ 1 $θ 2

!0.640 and its confidence belt included zero.  The standard deviation of the residuals is 0.139.

An MA (0,0,2) model showed no correlation among the two coefficients or between either
coefficient and the mean.  The residual chi-square = 32.77, with 27 degrees of freedom (0.30 > P
> 0.20) is not significantly different from that expected from white noise (random error).  The
relevant equation is:

z t  = 3.536  + a t  + 0.205a t-1  + 0.274a t-2  

with standard deviation of the residuals as = 0.136, a small improvement over the MA (0,1,2)$σe

model and some slight improvement over the original standard deviation (0.147) of the variable
logarithms given in Table 6.2.

Model Fitting: Acid Load (Log)

As a first approximation, an MA (0,1,1) was fitted to these data and a trend term was included to
determine if it gave rise to any improvement.  The Acf of the residuals yielded a chi-square =
22.41 with 28 degrees of freedom (0.80 > P > 0.70), not significantly different from an Acf of
white noise.  A barely significant spike occurred at lag 16 in the Acf and Pacf.  It was not
supported by any other diagnostic characteristic and so was ignored.  The correlation coefficient
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between the trend constant and the MA coefficient ( )= !0.01.  Therefore, they are$θ 1

effectively independent.  However, on testing the trend term, its 95% confidence limits include
zero, and therefore, the trend constant does not make any real contribution to explaining the
variation of log acid load.  The MA coefficient ( ) = 0.247 and is real.  The equation may be$θ 1

expressed as (the trend term is omitted for reasons given above):  

zt  = a t � 0.247a t-1  

The standard deviation of the residuals is 0.355, which is approximately half the original
standard deviation of 0.614.

Two other models were fitted to these data (an ARI (1,1,0) and an ARMA (1,0,1)), again
assuming that the AR coefficient would proxy for the first difference in the ARMA model.  A
chi-square of the residuals from the ARI model yielded 22.11 with 29 degrees of freedom (0.90
> P > 0.80).  Clearly, the first differences and the autoregressive coefficient ( ) reduced anyΦ1

unusual occurrences in the data.  There were no significant spikes in the Acf but there is a
possible one at lag 16 in the Pacf (i.e. the MA (0,1,1) model).  The AR coefficient was
significantly different from zero ( = !0.203) and the standard deviation of the residuals is $Φ $σe

= 0.353, a considerable reduction from the original value of 0.614 for standard deviation of the
logarithms (see Table 6.2).  The equation is:

z t  = 0.797z t-1 � 0.203z t-2 + a t
`

The ARMA (1,0,1) model possessed two coefficients and a mean.  Their respective correlations
were r12 ( vs. ) = 0.03, r13 = 0.55, and r23 ( vs. ) = 0.01, effectively independent for$Φ1 X X $θ 1

the first and third and not very large for the second.  Acf of the residuals yielded a chi-square of
24.32 with 27 degrees of freedom (0.70 > P > 0.50), indicating no significant difference from an
Acf for white noise.  The autoregressive coefficient ( = 0.881) and the mean ( = 3.196)$Φ1 X
were real, whereas the 95% confidence limits around the moving average coefficient (  =$θ 1

0.171) contains zero.  The standard deviation of the residuals is 0.347, the same order of
magnitude as the previous models fitted to log acid load.

Summary

It is somewhat surprising that there appears to be no seasonal component in the time series
models, particularly in the load variables.  The only satisfactory explanation appears to be the
existence of too many maxima at too many different times with very little repetition during the
same time period. 

Most of the variables show the presence of a trend over time (pH, flow, acidity, acid load, iron
load, ferrous iron).  These variables need a first difference to remove the effects of the trend.  It
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seems evident from the studies to date that a moving average model applied to the first
differences is almost universally the best choice.  In some cases, the autoregressive model,
possibly with a first difference, is also appropriate.  In both cases, there is an indicator that the
variation in whichever parameter is being analyzed, when first differenced, leads to a random
walk.

The quality control analysis, in both cases, suggests that either the mean (plus or minus two
standard deviations) or the non-parametric median (plus or minus a function of the H-spread) are
equally appropriate.  For the present, it is recommended both should be used until one or the
other show superior performance.
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